

ORAC Antioxidant Assay Kit Cat# AOX-2

INSTRUCTION MANUAL ZBM0035.00

STORAGE CONDITIONS

All orders are delivered via Federal Express Priority courier at 4°C. All orders must be processed immediately upon arrival.

Fluorescein Solution

Store at 4°C Trolox Standard and AAPH Reagent

Store at -20°C

Assay Buffer and black assay plate

Store at Room Temperature

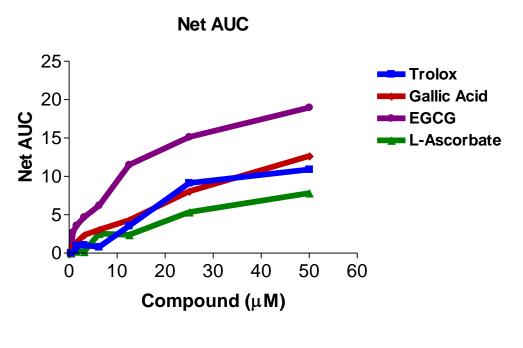
Long-term Storage

Remove the Fluorescein Solution from the box and place at 4°C, store the Trolox Solution and AAPH at -20°C. Reagents are good for 3 months if stored properly.

For in vitro Use Only

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, expressed or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Zen-Bio, Inc. Zen-Bio, Inc. shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.


ORDERING INFORMATION AND TECHNICAL SERVICES

- Zen-Bio, Inc.
- 3200 Chapel Hill-Nelson Blvd., Suite 104
- PO Box 13888
- Research Triangle Park, NC 27709
- **Telephone** (919) 547-0692
- Facsimile (FAX) (919) 547-0693
- Toll Free 1-866-ADIPOSE (866)-234-7673
- Electronic mail (e-mail) information@zen-bio.com
- World Wide Web
 <u>http://www.zenbio.com</u>

INTRODUCTION

Free radicals and reactive oxygen species (ROS) are highly reactive molecules that are generated by normal cellular processes, environmental stresses, and UV irradiation. ROS react with cellular components, damaging DNA, carbohydrates, proteins, and lipids causing cellular and tissue injury. Excess production of reactive oxygen species can also lead to inflammation, premature aging disorders, and several disease states, including cancer, diabetes, and atherosclerosis. Organisms have developed complex antioxidant systems to protect themselves from oxidative stress, however, excess ROS can overwhelm the systems and cause severe damage.

The Zen-Bio ORAC (Oxygen Radical Absorbance Capacity) Antioxidant Assay Kit can be used to determine the total antioxidant capacity of biological fluids, cells, and tissue. It can also be used to assay the antioxidant activity of naturally occurring or synthetic compounds for use as dietary supplements, topical protection, and therapeutics. The assay measures the loss of fluorescein fluorescence over time due to peroxyl-radical formation by the breakdown of AAPH (2,2'-azobis-2-methyl-propanimidamide, dihydrochloride). Trolox [6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid], a water soluble vitamin E analog, serves as a positive control inhibiting fluorescein decay in a dose dependent manner. The ORAC assay is a kinetic assay measuring fluroescein decay and antioxidant protection over time. The antioxidant activity in biological fluids, cells, tissues, and natural extracts can be normalized to equivalent Trolox units to quantify the composite antioxidant activity present. This assay measures antioxidant activity by hydrogen atom transfer and when combined with Zen-Bio's ABTS antioxidant assay kit, provides a comprehensive analysis of a test sample's antioxidant activity.

Effects of antioxidants in ORAC assay

Trolox, Sodium L-ascorbate, Epigallocatechin gallate (EGCG), and Gallic acid were tested for their antioxidant activity in the ORAC antioxidant assay.

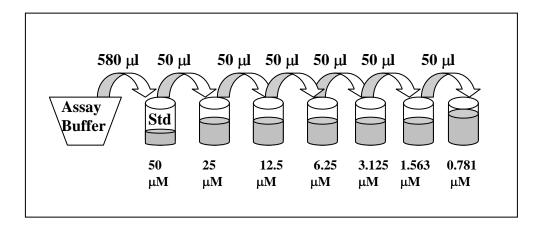
PRINCIPLE OF THE ASSAY

A peroxyl radical (ROO') is formed from the breakdown of AAPH (2,2'-azobis-2-methyl-propanimidamide, dihydrochloride) at 37 °C. The peroxyl radical can oxidize fluorescein (3',6'-dihydroxy-spiro[isobenzofuran-1[3H], 9'[9H]-xanthen]-3-one) to generate a product without fluorescence. Antioxidants supress this reaction by a hydrogen atom transfer mechanism, inhibiting the oxidative degradation of the fluorescein signal. The fluorescence signal is measured over 30 minutes by excitation at 485 nm, emission at 538 nm, and cutoff=530 nm. The concentration of antioxidant in the test sample is proportional to the fluorescence intensity through the course of the assay and is assessed by comparing the net area under the curve to that of a known antioxidant, trolox.

 $\begin{array}{c} \text{AAPH} \quad \text{ROO} \\ \hline \\ \hline \\ \text{fluorescein} \quad & \longrightarrow \\ \end{array} \quad \text{non-fluorescent product} \end{array}$

[Antioxidants inhibit the oxidation of fluorescein by hydrogen atom transfer]

ITEMS INCLUDED IN THE KIT


ITEM	DESCRIPTION	Cap Color	UNIT	QTY	STORAGE
Blank Assay Plates	96-well assay plates, black		PLATE	1	
Assay Buffer	50 ml		BOTTLE	1	RT
AAPH	175 mg		BOTTLE	1	-20°C
Trolox	1.5mM in Dilution Buffer		20 μl /VIAL	1	-20°C
Fluorescein Solution	15x stock		1.3 ml /VIAL	1	4°C
Tray	For multi-channel pipetters, clear polyvinyl		EACH		

Other equipment/reagents required but not provided with the kit:

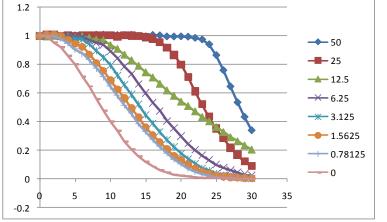
- Multi-channel Pipet, single channel pipet and pipet tips
- Tubes for preparing standards and working solutions
- Fluorescence plate reader able to perform excitation=485nm; emission=538nm; cutoff=530nm
- Fluorescence plate reader with incubator chamber set to 37°C

- Warm the plate reader incubation chamber to 37°C. Set-up plate reader to perform a kinetic read for 30 minutes with 1 minute intervals. Excitation = 485 nm; Emission = 538 nm; Cutoff = 530 nm.
- 2. Prepare fluorescein working solution from the stock solution provided by transferring 16.8ml of Assay Buffer to an empty tube (not provided) and adding 1.2ml stock fluorescein solution. Mix and protect from light.
- 3. Prepare Trolox standards as follows:

Briefly spin down the contents of the 1.5 mM Trolox standard tube after thawing. Pipette 580 μ l of Assay Buffer into the 1.5 mM Trolox standard tube provided and mix well by vortexing. This produces a diluted stock Trolox standard of 50 μ M. Pipette 50 μ l of assay buffer into 6 tubes (not provided). Using the newly diluted stock Trolox solution, prepare a dilution series as depicted below. Mix each new dilution thoroughly before proceeding to the next. The 50 μ M stock dilution serves as the highest standard, and the assay buffer serves as the zero standard.

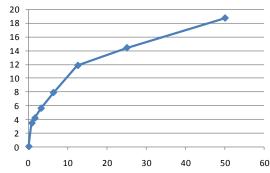
- 4. Add 150 μ l of the working fluorescein solution to each well of the assay plate provided.
- 5. Add 25 μ l of samples or Trolox standards to individual wells of the assay plate provided, add 25 μ l of assay buffer to individual wells as a negative control. Place plate at 37°C for at least 5 minutes.
- 6. While the assay plate is equilibrating to 37°C, prepare the AAPH Working Solution by adding 2.7 ml Assay Buffer to the tube provided and gently invert. Place the working solution on ice until needed. AAPH solution is good for 8 hours if kept on ice.
- To begin the assay, add 25 μl of the AAPH working solution to each of the wells containing standards and samples from step 5. Place the assay plate in the plate reader and begin kinetic fluorescence reading.

TROLOX STANDARD CURVE


Generate standard curve: see example below [DO NOT use this standard curve to generate your data. This is an example.] Kingtic RLU Values

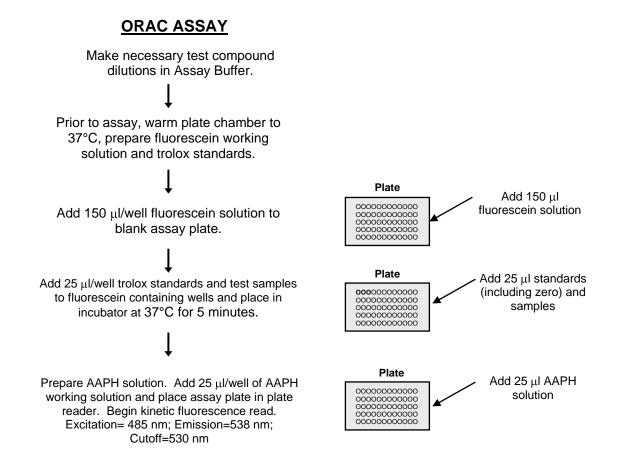
Kinetic RLU Values								Normalized to Time=0 by (RLU/RLU0)									
Concentration uM						Concentration uM											
	50	25	12.5	6.25	3.125	1.5625	0.78125	0		50	25	12.5	6.25	3.125	1.5625	0.78125	0
0	966.56	25 974.716	971.314	959.558	950.504	965.979	936.441	781.506	0	1	1	1	1	1	1	1	1
1	971.601	989.643	967.724	962.317	947.52	965.055	934.329	768.477	1	1.005246	1.015403	0.996283	1.002892	0.996842	0.999038	0.997731	0.983208
2	976.741	978.416	973.467	967.572	959.765	966.599	934.266	732.977	2	1.010595	1.003818	1.002229	1.008401	1.009801	1.000646	0.997663	0.937455
3	969.81	974.563	968.87	951.566	946.04	960.243	927.229	714.321	3	1.003382	0.999842	0.997469	0.991622	0.995276	0.994027	0.990104	0.913411
4	962.41	980.073	976.047	967.674	941.624	935.023	892.304	669.593	4	0.995681	1.005528	1.004901	1.008508	0.990602	0.967767	0.952584	0.855765
5	964.54	978.611	959.138	959.404	941.988	912.143	858.614	623.188	5	0.997898	1.004019	0.987392	0.999839	0.990987	0.943943	0.916391	0.795957
6	970.24	977.499	972.722	959.086	937.274	893.236	827.132	566.26	6	1.00383	1.002872	1.001458	0.999505	0.985999	0.924256	0.88257	0.722588
7	968.594	980.047	962.207	949.074	911.596	845.072	793.373	513.437	7	1.002117	1.005501	0.99057	0.98901	0.958823	0.874105	0.846302	0.654508
8	970.82	984.309	954.42	948.619	872.599	792.937	752.615	463.655	8	1.004433	1.009899	0.982506	0.988533	0.917552	0.819819	0.802516	0.590349
9	967.92	979.537	943.333	935.229	833.362	741.794	692.278	408.376	9	1.001415	1.004975	0.971026	0.974497	0.876028	0.766566	0.737696	0.519104
10	973.728	977.452	921.212	892.744	786.836	677.572	634.163	348.18	10	1.007459	1.002823	0.948119	0.929961	0.826789	0.699695	0.675264	0.441523
11	970.462	971.207	898.306	850.655	719.552	625.463	567.105	302.142	11	1.004061	0.996379	0.9244	0.885841	0.755582	0.645436	0.603223	0.382188
12	972.889	978.234	855.698	789.935	665.862	560.411	510.335	252.677	12	1.006586	1.00363	0.880279	0.82219	0.698761	0.5777	0.542235	0.318437
13	974.888	983.876	824.175	735.212	602.743	495.683	452.619	205.499	13	1.008666	1.009452	0.847637	0.764826	0.631962	0.510302	0.480231	0.257633
14	959.879	979.852	789.163	666.95	542.735	436.068	389.047	168.797	14	0.993048	1.0053	0.811382	0.69327	0.568455	0.448227	0.411936	0.210331
15	959.84	965.068	744.713	598.298	477.779	371.616	342.87	132.739	15	0.993007	0.990045	0.765354	0.621304	0.499711	0.381116	0.362328	0.163859
16	970.71	959.634	714.138	527.254	419.26	315.949	281.279	102.604	16	1.004319	0.984437	0.733693	0.546831		0.323153	0.296161	0.12502
17	970.624	933.286	669.927	472.357	362.445	270.327	232.519	77.376	17	1.004229	0.95725	0.687913	0.489285	0.377652	0.275648	0.243778	0.092506
18	960.514	894.32	631.93	401.488	309.286	223.2	192.426	59.31	18	0.993708	0.917042	0.648567	0.414995	0.321393	0.226577	0.200707	0.069222
19	965.153	850.58	591.332	345.356	261.168	179.92	151.049	42.696	19	0.998536	0.871908	0.606527	0.356154	0.27047	0.181512	0.156255	0.04781
20	962.63	795.528	554.628	287.3	215.321	146.718	119.395	31.323	20	0.99591	0.815102	0.56852	0.295296	0.22195	0.14694	0.12225	0.033152
21	972.371	723.589	525.516	232.894	174.069	115.013	88.37	23.757	21	1.006047	0.74087	0.538375	0.238264	0.178292	0.113927	0.08892	0.023401
22	959.124	642.273	490.177	187.087	138.661	86.588	66.559	17.888	22	0.992262	0.656963	0.501781	0.190246		0.084329	0.065488	0.015837
23	949.111	554.177	453.872	144.854	104.357	67.21	49.726	12.229	23	0.981842	0.566059	0.464187	0.145975		0.064152	0.047404	0.008544
24	940.463	477.995	433.599	109.78	81.168	48.246	33.436	9.18	24		0.487449	0.443194	0.109208	0.079974	0.044405	0.029904	0.004614
25	899.635	402.11	397.627	79.592	57.419	34.411	23.618	8.609	25	0.930356	0.409146	0.405945	0.077563	0.05484	0.03	0.019357	0.003878
26	802.935	336.081	365.829	57.375	42.75	25.458	17.828	7.215	26	0.829728	0.341013	0.373018	0.054274	0.039316	0.020677	0.013137	0.002081
27	703.126	267.885	330.226	42.413	32.842	17.978	12.951	5.882	27	0.725864	0.270644	0.336151	0.03859	0.02883	0.012889	0.007897	0.000363
28	587.867	218.682	306.49	30.118	23.509	12.733	10.122	5.59	28	0.605922		0.311573	0.025701	0.018953	0.007427	0.004858	-1.3E-05
29	490.685	167.628	276.067	20.881	14.451	10.882	8.546	5.89	29		0.167192	0.280069	0.016019	0.009367	0.0055	0.003165	0.000374
30	390.92	128.386	243.915	15.784	12.421	8.687	6.959	5.686	30	0.400974	0.126699	0.246776	0.010676	0.007219	0.003214	0.00146	0.000111

Use normalized data to generate Area Under the Curve (AUC) values. AUC values can be calculated by a statistical program (such as GraphPad Prism) or by the following formula:


AUC= 0.5 + (F1/F0) + (F2/F0) + ... + 0.5*(F30/F0)Where F0= normalized fluorescence at t=0

Net AUC is determined by subtracting the AUC for no compound addition from the other AUC values.

	50	25	12.5	6.25	3.125	1.5625	0.78125	0
AUC	27.84	23.51	20.94	16.99	14.71	13.29	12.54	9.139
Net AUC	18.701	14.371	11.801	7.851	5.571	4.151	3.401	0


Data for unknowns may be expressed as μ M Trolox equivalents.

APPENDIX A: Plate layout_____

т	G	п	m	D	C	ω	٨	
								-
								2
								ω
								4
								СЛ
								6
								7
								ω
								9
								10
								1
								12

APPENDIX B: Protocol Flowchart

